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An a lgor i thm for  the calculat ion of natural  v ib ra t ions  and waves ,  based  on the use of specia l  
m a t r i c e s  belonging to the type of the Green m a t r i c e s  (according to the p rocedure  [1]), is 
r ea l i zed  in this  work. Resul t s  of ca lcula t ions  for  a spher ica l  shell  and a toroidal  shell a re  
p r e sen t ed  and discussed.  The f requenc ies  and modes of na tura l  f requenc ies  of gradual ly  in-  
c r e a s i n g  tones  a r e  demons t ra ted .  The data obtained a re  used for  the calculat ion of p ropaga t -  
ing waves  for  va r ious  methods of initial per turba t ion .  Specific f ea tu res  of the dis t r ibut ion 
of dynamic s t r e s s e s  a r e  d iscovered .  

1. Thin-wal led  cons t ruc t ional  e l ements  a r e  ex tens ive ly  used in aviation,  rocke t ry , and  other  f ie lds  of 
modern  technology.  The maintenance  of re l iabi l i ty  of cons t ruc t ions  for  p r o g r e s s i v e l y  inc reas ing  inten-  
s i ty  of working p r o c e s s e s  gives r i s e  to a need for  more  accura te  account of the dynamic fac tors .  Due to 
the absence  of effect ive calcula t ion a lgor i thms  for  c a s e s  that a re  c lose  to r e a l  situation, it is often neces -  
s a r y  to use crude models .  Thus, when calculat ing the f requencies  and modes of natural  v ibra t ions  of a 
toro ida l  shell ,  the l a t t e r  is approx ima te ly  rep laced  by a cyl indr ica l  shell  (see [2]). The d is tor t ions  a r i s ing  
as  a r e su l t  become  notable in the case  of l a rge  c u r v a t u r e s  of the equators .  To obtain more  accura t e  r e su l t s  
we must  work out calculat ion p r o c e d u r e s  which more  fully take into account the geomet r i ca l  p r o p e r t i e s  of 
the objects  being invest igated.  

In [1] a poss ib i l i ty  of using m a t r i c e s  belonging to the type  of the Green  m a t r i c e s ,  when calculat ing the 
natural  f requenc ies  and invest igat ing propagat ing  waves  in shells ,  is noted. Let  
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be the abbrev ia ted  (matrix) notation of the sy s t em of different ial  equations de te rmin ing  the v ib ra t ions  of a 
ce r t a in  shell.  Here  A (q~, ~; O/0 ~0, 0/03) denotes a ma t r i x  of l inear  different ial  ope ra to r s ,  U is the d i s -  
p l acement  v e c t o r  of points of the middle sur face  of the shell,  p is the specif ic  weight, D is the cyl indr ica l  
r igidi ty,  E and (r a re  the Young's  modulus and Po i s son t s  ra t io  respec t ive ly ,  and k is the th ickness  of the 
shell.  

If G (~o, ~; a ,  fl) is a specia l  m a t r i x  of the Green  ma t r i x  type, for  which 

((P' ~) ---- f G ((p, x?; (~, ~) F (a, ~) d~. ~0. U 
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iF (a, fi) is the ex te rna l  sur face  load], then, as  is noted in [1], the f requenc ies  and modes of na tura l  v i b r a -  
t ions a r e  de te rmined  by an in te rg ra l  equation of the f o r m  

U (9, @) = k* II  G (r ~; a, ~) U (a, ~) d~. ~fl (1.2) 
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TABLE 1 

m 
k 

0 & 8 i2 i6 20 

0.23756 
0.81827 
t .87075 
4.26306 

2.18t47 
2.90829 
4.58635 
8.04533 

9.28284 
t0.1746 
t2.406t 
22.4877 

2t .12483 
22.18600 
24.74807 
47.2421t 

37.68109 
38.9160t 
4t .88852 
8i .65108 

58.93870 
~0.31930 
63.68932 

125.i058 

where t 4 = pw2/D, and w is the frequency of natural vibrat ions of the shell. 

For  computations (1.2) is approximated by a sys tem of l inear  algebraic  equations 

N 

u (~j) - ~ ~ p~q~ (~, ~) u (~0 = o 
1 

(1.3) 

where ~i and Pi  are  the quadrature nodes and coefficients respect ively.  The eigenvalues are  determined 
f rom the condition 

det {J -- )~4Q} = 0 (1.4) 

where J is a unit matrix,  while Q is the matr ix  of the system (1.3). It is convenient to make the intervals  
of sign change of the left side of the condition (1.4) more accurate  by a success ive  sorting. Thus we achieve 
a high degree of accuracy  in the calculation of the roots  of Eq. (1.4). 

As is mentioned in [3], the calculation of the eigenfunctions can be ca r r i ed  out according to standard 
p r o g r a m s  used for  the solution of sys tems  of l inear a lgebraic  equations. Here the sys tem (1.3) is slightly 
modified (for more  details, see [3]). 

The Green mat r ices  were calculated for  toroidal  shells with the paramet r ica t ion  

x =  (R +acos~0) cos~, y = (R +acos(p)  sinS, z = asia  

with the conditions of [1] fulfilled. These mat r ices  can be used to calculate the frequencies and modes of 
vibrations.  

If we put a =0.25, h =1, a =100, R= 0 (a spherical  shell), then we obtain the eigenvalues X~m whose 
values are  presented in Table 1. The modes of natural vibrations corresponding to them are  shown in 
Fig. 1. In the upper row of the figure we have placed the images of the deforming equator.  The values of 
the index m (m=0,  m=4,  m =8 e tc . ) increas ing  f rom left to right determine the number of the harmonic 
being specified and the direct ion of the ~ coordinate. The eigenvalues for  each given m increase f rom 
top to bottom (kim , X2m, �9  kkm). At the same time an increase in the number of nodes on the meridian 
takes place. The accuracy  of the resul ts  is checked by compar ison of the data obtained with two approxi-  
mations of different detail. 

2. The eigenvalues and eigenfunetions thus obtained can be used to study propagating waves. Let in 
addition to (1.1) the initial conditions 

U (% ~; t) lt=o = r (T, {}), OU (~'Ot ~; t) ]t=~ ---- ~ (% 8) (2.1) 

hold. 

The solution of the problem (2.1) for the sys tem (1.1) according to the procedure  of separat ion of 
var iables ,  by means of the eigenvalues X km and the eigenfunctions Ukm determined above, is represented  
in the form 

km 0)km 

where ~km and ~km are the coefficients of the expansion 

km km 
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In Fig. 2a, b we have shown the form of the meridian at success ive  t ime instants (from top to bottom) 
for  a spherical  shell, when the initial displacement  or the initial veloci ty is localized in the neighborhood 
of the pole (a), or  in the neighborhood of the equator  (b). In the upper part  of the figure we have r e p r e -  
sented the shape of the initial displacement (the solid line) or  the graph of initial veloci t ies  (the dotted line). 
The magnitude of the initial veloci ty  is set off along the normal  f rom the neutral  position of the meridian. 

In Fig. 3a, b we have depicted membrane s t r e s ses ,  maximum over  the t ime, for the spherical  shell. 
They are  also set off along the normal  f rom the meridian.  F o r m  of the initial displacement or  the graph 
of the initial veloci t ies  are  represented  inside each section (a concentr ic  c i rc le  of a smal le r  radius). It 
should be noted that, just as in the case of localization of the initial displacement  or  the initial veloci ty  
c lose to the pole, so also in the case of localization of them in the vicinity of the equator the dynamic 
s t r e s s e s  reach ex t remal  values at the pole. 

In Fig. 3b we have depicted values of moments,  maximum over  the t ime, for the spherical  shell. 
These s t r e s se s  attain maximum values in medium latitudes (~ 3/4). The maximum zone is c lear ly  ex-  
p re s sed  (see Fig. 3b). 

Analogous s t r e s s e s  and moments  for a torotdal  shell with the pa rame te r s  R =200, a =100, h =1, cr = 
0.25 a re  shown in Fig. 4a, b respect ively.  The left sides of the f igures  cor respond  to eases  in which initial 
veloci t ies  are  absent, while the right sides cor respond  to the cases  where initial d isplacements  are  absent. 
We note that independently of the method of initial per turbat ion (usingthe positive, zero  or  negative Gaussian 
curvature) the ex t remal  values of the membrane s t r e s s e s  and moments in the toroidal  shell a re  reached 
close to the line where the sign of the Gaussian curvature  changes. 
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The results  presented confirm the possibility of an effective calculation study of the dynamic charac-  
ter is t ic  according to the procedure proposed in [1], by means of the Green matrices computed beforehand. 
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